

PRODUCT DATASHEET

ChemiScreen™ CXCR5 Chemokine Receptor Stable Cell Line

CATALOG NUMBER: HTS055C

CONTENTS: 2 vials of mycoplasma-free cells, 1 mL per vial.

STORAGE: Vials are to be stored in liquid N₂.

BACKGROUND

ChemiScreen cell lines are constructed in the Chem-1 host, which supports high levels of functional receptor expression on the cell surface. Chem-1 cells contain high endogenous levels of $G\alpha15$, a promiscuous G protein, allowing most receptors to couple to the calcium signaling pathway. The Chem-10 host is derived from Chem-1.

CXCR5 (also known as BLR1) is a GPCR that binds selectively to the chemokine CXCL13 (also known as BLC and BCA-1) to mediate immune system development and function (Förster *et al.*, 1996; Gunn *et al.*, 1998). CXCR5 cooperates with CCR7 to determine functional organization of lymphoid organs such as lymph nodes and Peyer's patches (Ohl *et al.*, 2003). In addition, CXCR5 mediates migration of B cells into the follicles of the splenic white pulp, thus permitting antigen deposition on follicular dendritic cells (Förster *et al.*, 1996; Cinamon *et al.*, 2008). Patients with rheumatoid arthritis (RA) displayed upregulated expression of CXCR5 to a greater extent than other chemokine receptors, and CXCR5-null mice subjected to antigen-induced arthritis display reduced joint destruction (Schmutz *et al.*, 2004; Wengner *et al.*, 2007). Therefore, CXCR5 represents a potential target for treatment of rheumatoid arthritis. Cloned human CXCR5-expressing cell line is made in the Chem-10 host, which supports high levels of recombinant CXCR5 expression on the cell surface and contains optimal levels of promiscuous G protein to couple the receptor to the calcium signaling pathway. Thus, the cell line is an ideal tool for screening for agonists and antagonists at CXCR5.

USE RESTRICTIONS

Please see Limited Use Label License Agreement (Label License Agreement) for further details.

WARNINGS

For Research Use Only; Not for Use in Diagnostic Procedures Not for Animal or Human Consumption

GMO

This product contains genetically modified organisms.
Este producto contiene organismos genéticamente modificados.
Questo prodotto contiene degli organismi geneticamente modificati.
Dieses Produkt enthält genetisch modifizierte Organismen.
Ce produit contient organismes génétiquement des modifiés.
Dit product bevat genetisch gewijzigde organismen.
Tämä tuote sisältää geneettisesti muutettuja organismeja.
Denna produkt innehåller genetiskt ändrade organismer.

APPLICATIONS

Calcium Flux Fluorescence Assay

APPLICATION DATA

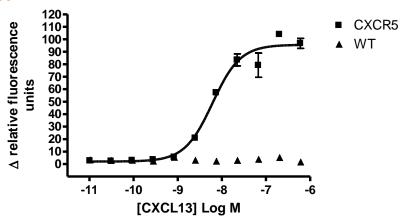


Figure 1. Representative data for activation of CXCR5 receptor stably expressed in Chem-1 cells induced by CXCL13 using a fluorescent calcium flux assay. CXCR5—expressing Chem-1 cells were seeded at 50,000 cells per well into a 96-well plate, and the following day the cells were loaded with a fluorescent calcium indicator. Calcium flux in response to the indicated ligand with a final concentration of 0.5% DMSO was determined on a Molecular Devices FLIPR TETRA® with ICCD camera. Maximal fluorescence signal obtained in this experiment was 13,000 RLU. Similarly parental cells (catalog #: HTSCHEM-1) were tested to determine the specificity of the resulting signal.

Table 1. EC₅₀ values of CXCR5-expressing Chem-1 cells.

LIGAND	ASSAY	POTENCY EC ₅₀ (nM)	REFERENCE
CXCL13	Calcium Flux - Fluorescence	6.8	Eurofins Internal Data
CXCL13	Calcium Flux - Fluorescence	100	Gunn <i>et al.</i> , 1998

^{*} The cell line was tested and found to have equivalent EC_{50} and signal at 1, 3 and 6 weeks of continuous culture by calcium flux fluorescence.

CELL CULTURE

Table 2. Recommended Cell Culture Reagents (not provided)

Description	Component	Concentration	Supplier and Product Number
Basal Medium	DMEM high glucose Medium (4.5g/L)	-	Hyclone: SH30022
	Fetal Bovine Serum (FBS)	10%	Hyclone: SH30070.03
	Non-Essential Amino Acids (NEAA)	1X	Hyclone: SH30238.01
	HEPES	1X	EMD Millipore: TMS-003-C
Selection Medium	Basal Medium (see above)	-	
	Geneticin (G418)	250 μg/ml	Invivogen: ant-gn-5
	Hygromycin	250 μg/ml	Invivogen: ant-hg-5
Dissociation	Sterile PBS	-	Hyclone: SH30028.03
	0.25% Trypsin-EDTA	-	Hyclone: SH30042.01
CryoMedium	Basal Medium (see above)	40%	
	Fetal Bovine Serum (FBS)	50%	Hyclone: SH30070.03
	Dimethyl Sulfoxide (DMSO)	10%	Sigma: D2650

Discovery Services

Cell handling

- 1. Upon receipt, directly place cells in liquid nitrogen storage. Consistent cryopreservation is essential for culture integrity.
- 2. Prepare Basal Medium. Prepare 37°C Water Bath. Thaw cells rapidly by removing from liquid nitrogen, and immediately immersing in a 37°C water bath, until 90% thawed. Immediately sterilize the exterior of the vial with 70% ethanol.
- 3. Add vial contents to 15 mL Basal Medium in T75 Tissue Culture Treated Flask. Gently swirl flask and place in a humidified, tissue culture incubator, 37°C, 5% CO₂.
- 4. 18-24 Hours Post–Thaw, all live cells should be attached. Viability of the cells is expected to be 60-90%, At this time, exchange Basal Medium with Selection Medium.
- 5. When cells are approximately 80% confluent, passage the cells. It is suggested that user expand culture to create >20 vial Master Cell Bank at low passage number. Cells should be maintained at less than 80% confluency for optimal assay results.
- 6. Cell Dissociation: Aspirate Culture Medium. Gently wash with 1x Volume PBS. Add 0.1x Volume Warm Trypsin-EDTA. Incubate 4 min, 37°C, until cells dislodge. *If cells do not round up, place in 37°C incubator for additional 2 min*. Neutralize Trypsin and collect cells in 1x Volume Basal Medium.
- 7. Seed Cells for expansion of culture. It is recommended that cell lines are passaged at least once before use in assays.

Table 3. Cell Culture Seeding Suggestions: User should define based on research needs.

Flask Size (cm ²)	Volume (mL)	Total Cell Number (x10 ⁶)	Growth Period (hrs)					
T75	15	5.0	24					
T75	15	2.0	48					
T75	15	0.45	72					

Fluorescence

Table 4. Settings for FLIPR TETRA® with ICCD camera option

Option	Setting						
Read Mode	Fluorescence						
Ex/Em	Ex470_495 / Em515_575						
Camera Gain	2000						
Gate Open	6 %						
Exposure Time	0.53						
Read Interval	1s						
Dispense Volume	50 μl (25 μl for 384-well)						
Dispense Height	95 µl (50 µl for 384-well)						
Dispense Speed	50 μl/sec						
Expel Volume	0 μΙ						
Analysis	Subtract Bias Sample 1						

Table 5. Assay Materials (Not provided)

Description	Supplier and Product Number								
HBSS	Invitrogen: 14025								
HEPES 1M Stock	EMD Millipore: TMS-003-C								
Probenicid	Sigma: P8761								
Quest Fluo-8 [™] , AM	AAT Bioquest: 21080								
CXCL5 ligand	R&D Systems: 801-CX								
Non-Binding 96/384 well Plates (for ligand prep)	Corning: 3605/ 3574								
Black (clear Bottom) cell assay plates	Corning: 3904/ 3712								
Coelenterazine-h (250µg). Prepare to 10mM	Promega: S2011								

Assay Protocol - Fluorescence

- 1. Dissociate Culture as Recommended. Collect in Basal Medium. Document Cell Count and Viability
- 2. Centrifuge the cell suspension at 190 x g for six min
- 3. Remove supernatant. Gently resuspend the cell pellet in Basal Medium. *It is suggested that end user optimize cell plating based on individual formats.* (Default: Resuspend in volume to achieve 5x10⁵cells/ml (i.e, if collected 5e6 TC, ^{5e6/}_{5e5/ml} =10 mL volume)
- 4. Seed cell suspension into black, clear bottom plate (100 μL/well for 96-well plate). When seeding is complete, place the assay plate at room temperature for 30 min.
- 5. Move assay plate to a humidified 37°C 5% CO₂ incubator for 18-24 h.
- 6. Next day, prepare Assay buffer (HBSS, 20mM HEPES, 2.5 mM Probenicid, pH 7.4) and Loading buffer (Assay buffer with 5 mM Fluo8 Dye). *Note: Please prepare Fluo8 stock according to Manufacturer's Recommendations*
- 7. Remove medium from assay plate and wash 1X with Assay Buffer.
- 8. Add Loading buffer to assay plate (100 μ L/well for 96-well plate). Incubate plate for 1.5 h at room temperature, protected from light.
- 9. Prepare ligands in assay buffer at 3x final concentration in non-binding plates. Use Buffer Only Control Wells for Background Subtraction.
- 10. Create protocol for ligand addition. Please refer to FLIPR^{TETRA}® settings provided in Table 2. Set time course for 180 s, with ligand addition at 10 s.
- 11. After the run is complete, apply subtract bias on sample 1. We recommend using Negative Control Correction with Buffer Only Wells. Export data to according to research needs. For most Calcium Flux analysis using Export of Max Signal to end of run is sufficient.

HOST CELL

Chem-10, a rat adherent cell line of hematopoietic origin expressing a recombinant promiscuous G-protein.

EXOGENOUS GENE EXPRESSION

Human CXCR5 cDNA (Accession Number: NM_0001716; see CODING SEQUENCE below)

CODING SEQUENCE

	ATG M	AAC N	TAC Y	CCG P	CTA L	ACG T	CTG L	GAA E	ATG M	GAC D	CTC L	GAG E	AAC N	CTG L	GAG E		CTG L	TTC F	TGG W	GAA E	CTG L	GAC D	AGA R	TTG L		72 24
	GAC D	AAC N	TAT Y	AAC N	GAC D	ACC T	TCC S		GTG V	GAA E	AAT N	CAT H	CTC L	TGC C	CCT P	GCC A	ACA T	GAG E	GGG G	CCC P	CTC L	ATG M	GCC A	TCC S		144 48
145 49		AAG K			TTC F	GTG V	CCC P	GTG V	GCC A	TAC Y	AGC S	CTC L	ATC I	TTC F	CTC L	CTG L	GGC G	GTG V	ATC I	GGC G	AAC N	GTC V	CTG L	GTG V		216 72
	CTG L		ATC I	CTG L	GAG E	CGG R	CAC H	CGG R	CAG Q	ACA T	CGC R	AGT S	TCC S	ACG T	GAG E	ACC T	TTC F	CTG L	TTC F	CAC H	CTG L	GCC A	GTG V	GCC A		288 96
289 97		CTC L	CTG L		GTC V	TTC F	ATC I	TTG L	CCC P	TTT F		GTG V	GCC A	GAG E	GGC G	TCT S	GTG V	GGC G	TGG W	GTC V	CTG L	GGG G	ACC T	TTC F		360 120
	CTC L		AAA K	ACT T	GTG V	ATT I	GCC A	CTG L	CAC H		GTC V	AAC N	TTC F	TAC Y	TGC C	AGC S	AGC S	CTG L	CTC L	CTG L	GCC A	TGC C	ATC I	GCC A		432 144
433 145		GAC D	CGC R	TAC Y	CTG L	GCC A	ATT	GTC V	CAC H	GCC A	GTC V	CAT H	GCC A					CGC R		CTC L	TCC S		CAC H		_ _ 1	504 68
505 169		TGT C	GGG G	ACC T	ATC I	TGG W	CTG L	GTG V	GGC G		CTC L	CTT L	GCC A	TTG L	CCA P	GAG E	ATT		TTC F		AAA K	GTC V	AGC S	CAA Q		576 192
577 193		CAT H	CAC H	AAC N	AAC N	TCC S	CTG L	CCA P	CGT R	TGC C	ACC T	TTC F	TCC S	CAA Q	GAG E	AAC N	CAA Q	GCA A	GAA E	ACG T	CAT H	GCC A	TGG W	TTC F		648 216
649 217		TCC S	CGA R	TTC F	CTC L	TAC Y	CAT H	GTG V	GCG A	GGA G	TTC F	CTG L	CTG L	CCC P	ATG M	CTG L	GTG V	ATG M	GGC G	TGG W	TGC C	TAC Y	GTG V	GGG G		720 240
721 241		GTG V		AGG R	TTG L	CGC R		GCC A		CGG R	CGC R	CCT P	CAG Q		CAG Q	AAG K		GTC V	AGG R		GCC A	ATC I	CTG L	GTG V		792 264
793 265		AGC S		TTC F	TTC F	CTC L	TGC C	TGG W	TCA S	CCC P	TAC Y	CAC H	ATC I	GTC V	ATC I	TTC F	CTG L	GAC D	ACC T	CTG L	GCG A	AGG R	CTG L	AGG K		864 288
865 289		GTG V	GAC D	AAT N	ACC T	TGC C	AAG K	CTG L	AAT N	GGC G	TCT S	CTC L	CCC P	GTG V	GCC A	ATC I	ACC T	ATG M	TGT C	GAG E	TTC F	CTG L	GGC G	CTG L		936 312
937 313		CAC H		TGC C	CTC L	AAC N	CCC P	ATG M	CTC L	TAC Y	ACT T	TTC F	GCC A	GGC G	GTG V	AAG K	TTC F	CGC R	AGT S	GAC D	CTG L	TCG S	CGG R	CTC L		1008 336
1009 337			AAG K		GGC G	TGT C	ACC T	GGC G	CCT P	GCC A	TCC S	CTG L			CTC L		CCT P	AGC S	TGG W	CGC R	AGG R	AGC S	AGT S		_ - 3	1080
1081 361		GAG E			AAT N			TCT S		ACC T	ACG T		TGA Stp													

RELATED PRODUCTS

Product Number Description

HTSCHEM-1 ChemiScreen™ Chem-1 Parental Cell Line (control cells)

HTS055M ChemiScreen™ CXCR5 Chemokine family receptor membrane prep

REFERENCES

- 1. Cinamon G *et al.* (2008) Follicular shuttling of marginal zone B cells facilitates antigen transport. Nat. Immunol. 9: 54-62.
- 2. Gunn MD *et al.* (1998) A B-cell-homing chemokine made in lymphoid follicles activates Burkitt's lymphoma receptor-1. Nature 391: 799-803.
- 3. Ohl L *et al.* (2003) Cooperating mechanisms of CXCR5 and CCR7 in development and organization of secondary lymphoid organs. J. Exp. Med. 197: 1199-1204
- 4. Schmutz C *et al.* (2004) Chemokine receptors in the rheumatoid synovium: upregulation of CXCR5. Arthritis Res. Ther. 7: R217-R229
- 5. Wengner AM *et al.* (2007) CXCR5- and CCR7-dependent lymphoid neogenesis in a murine model of chronic antigen-induced arthritis. Arthritis Rheum. 56: 3271-3283.

FOR RESEARCH USE ONLY; NOT FOR USE IN DIAGNOSTIC PROCEDURES. NOT FOR HUMAN OR ANIMAL CONSUMPTION

Unless otherwise stated in our catalog or other company documentation accompanying the product(s), our products are intended for research use only and are not to be used for any other purpose, which includes but is not limited to, unauthorized commercial uses, in vitro diagnostic uses, ex vivo or in vivo therapeutic uses or any type of consumption or application to humans or animals.

No part of these works may be reproduced in any form without permission in writing.

Limited Use Label License Agreement

In addition to the General Terms & Conditions of Sale for Products and Services section, this Product is subject to Limited Use Label License Agreement. Please go to https://www.eurofinsdiscoveryservices.com/cms/cms-content/misc/legal-disclaimer/ for more information.

Eurofins Pharma Bioanalytics Services US Inc. is an independent member of Eurofins Discovery Services