PRODUCT DATASHEET

ChemiScreen ${ }^{\text {TM }}$ mGLU $_{2}$ Metabotropic Glutamate Receptor Stable Cell Line

CATALOG NUMBER: HTS146C

CONTENTS: 2 vials of mycoplasma-free cells, 1 mL per vial.
STORAGE: Vials are to be stored in liquid N_{2}.

BACKGROUND

ChemiScreen cell lines are constructed in the Chem-1 host, which supports high levels of functional receptor expression on the cell surface. Chem-1 cells contain high endogenous levels of Ga15, a promiscuous G protein, allowing most receptors to couple to the calcium signaling pathway.

Glutamate is a main excitatory neurotransmitter in the central nervous system, and it plays a role in learning, memory and neurotoxicity. The biological actions of glutamate are mediated by ionotropic and metabotropic glutamate receptors, which are ion channels and GPCRs respectively. Metabotropic glutamate receptors (mGluRs) are members of the class 3 G-protein coupled receptor family, which are characterized by a large extracellular domain. They are further classified into group I, II, and III mGluRs on the basis of their sequence identity, pharmacology, and signal transduction mechanism. Group I (mGlu ${ }_{1}$ and mGlu_{5}) couple to the phospholipase C pathway through G_{aq}, whereas group II (mGlu_{2} and $\mathrm{mGlu} \mathbf{3}_{3}$) and group III (mGlu_{4}, $\mathrm{mGlu}_{6}, \mathrm{mGlu}$, and $\mathrm{mGlu} \mathbf{B}_{8}$) negatively couple to the adenylyl cyclase pathway though G_{ai} (Conn and Pin, 1997). Agonists of the Group II metabotropic glutamate receptors, mGlu_{2} and mGlu_{3}, display efficacy in animal models of anxiety and psychosis. A key role for mGlu_{2} in mediating these effects is indicated by the observation that selective allosteric potentiator of mGlu${ }_{2}$ also retains antipsychotic-like activities in mice (Galici et al., 2005). In addition, mGlu ${ }_{2 / 3}$ agonists display analgesic activity in animal models (Jones et al., 2005). The cloned human mGlu 2 -expressing cell line is made in the Chem-1 host, which supports high levels of recombinant mGlu_{2} expression on the cell surface and contains high levels of the promiscuous G protein $G_{\alpha 15}$ to couple the receptor to the calcium signaling pathway. Thus, the cell line is an ideal tool for screening for agonists, antagonists and allosteric modulators of mGlu ${ }_{2}$.

USE RESTRICTIONS

Please see Limited Use Label License Agreement (Label License Agreement) for further details.

WARNINGS

For Research Use Only; Not for Use in Diagnostic Procedures
Not for Animal or Human Consumption

GMO

This product contains genetically modified organisms.
Este producto contiene organismos genéticamente modificados.
Questo prodotto contiene degli organismi geneticamente modificati.
Dieses Produkt enthält genetisch modifizierte Organismen.
Ce produit contient organismes génétiquement des modifiés.
Dit product bevat genetisch gewijzigde organismen.
Tämä tuote sisältää geneettisesti muutettuja organismeja.
Denna produkt innehåller genetiskt ändrade organismer.

T | +1 8445227787
F |+1 6363627131
www.eurofins.com

Discovery Services

APPLICATIONS

Calcium Flux Fluorescence Assay

APPLICATION DATA

Figure 1. Representative data for activation of the mGLU_{2} receptor stably expressed in Chem-1 cells induced by DCG IV using a fluorescent calcium flux assay. mGLU ${ }_{2}$-expressing Chem-1 cells were seeded at 50,000 cells per well into a 96 -well plate, and the following day the cells were loaded with a fluorescent calcium indicator. Calcium flux in response to the indicated ligand with a final concentration of 0.5% DMSO was determined on a Molecular Devices FLIPR ${ }^{\text {TETRA }}{ }^{\circledR}$ with ICCD camera. Maximal fluorescence signal obtained in this experiment was 8,000 RLU. Similarly parental cells (catalog \#: HTSCHEM-1) were tested to determine the specificity of the resulting signal.

Table 1. EC_{50} value of mGLU_{2}-expressing Chem-1 cells.

LIGAND	ASSAY	POTENCY EC	(nM)
DCG IV	Calcium Flux - Fluorescence	0.51	REFERENCE

* The cell line was tested and found to have equivalent EC_{50} and signal at 1,3 and 6 weeks of continuous culture by calcium flux fluorescence.

CELL CULTURE

Table 2. Recommended Cell Culture Reagents (not provided)

Description	Component	Concentration	Supplier and Product Number
Basal Medium	DMEM high glucose Medium ($4.5 \mathrm{~g} / \mathrm{L}$)	-	Hyclone: SH30022
	Fetal Bovine Serum (FBS)	10\%	Hyclone: SH30070.03
	Non-Essential Amino Acids (NEAA)	1X	Hyclone: SH30238.01
	HEPES	1X	EMD Millipore: TMS-003-C
Selection Medium	Basal Medium (see above)	-	
	Geneticin (G418)	$250 \mu \mathrm{~g} / \mathrm{ml}$	Invivogen: ant-gn-5
Dissociation	Sterile PBS	-	Hyclone: SH30028.03
	0.25\% Trypsin-EDTA	-	Hyclone: SH30042.01
CryoMedium	Basal Medium (see above)	40\%	
	Fetal Bovine Serum (FBS)	50\%	Hyclone: SH30070.03
	Dimethyl Sulfoxide (DMSO)	10\%	Sigma: D2650

eurofins

Discovery Services

Cell Handling

1. Upon receipt, directly place cells in liquid nitrogen storage. Consistent cryopreservation is essential for culture integrity.
2. Prepare Basal Medium. Prepare $37^{\circ} \mathrm{C}$ Water Bath. Thaw cells rapidly by removing from liquid nitrogen, and immediately immersing in a $37^{\circ} \mathrm{C}$ water bath, until 90% thawed. Immediately sterilize the exterior of the vial with 70% ethanol.
3. Add vial contents to 15 mL Basal Medium in T75 Tissue Culture Treated Flask. Gently swirl flask and place in a humidified, tissue culture incubator, $37{ }^{\circ} \mathrm{C}, 5 \% \mathrm{CO}_{2}$.
4. 18-24 Hours Post-Thaw, all live cells should be attached. Viability of the cells is expected to be 60-90\%, At this time, exchange Basal Medium with Selection Medium.
5. When cells are approximately 80% confluent, passage the cells. It is suggested that user expand culture to create >20 vial Master Cell Bank at low passage number. Cells should be maintained at less than 80% confluency for optimal assay results.
6. Cell Dissociation: Aspirate Culture Medium. Gently wash with $1 x$ Volume PBS. Add 0.1x Volume Warm Trypsin-EDTA. Incubate $4 \mathrm{~min}, 37^{\circ} \mathrm{C}$, until cells dislodge. If cells do not round up, place in $37^{\circ} \mathrm{C}$ incubator for additional 2 min. Neutralize Trypsin and collect cells in $1 x$ Volume Basal Medium.
7. Seed Cells for expansion of culture. It is recommended that cell lines are passaged at least once before use in assays.

Table 3. Cell Culture Seeding Suggestions: User should define based on research needs.

Flask Size $\left(\mathrm{cm}^{2}\right)$	Volume (mL)	Total Cell Number $\left(\mathbf{x 1 0 ^ { 6 })}\right.$	Growth Period (hrs)
T75	15	5.0	24
T75	15	2.0	48
T75	15	0.45	72

ASSAY SETUP

Fluorescence

Table 4. Settings for FLIPR ${ }^{\text {TETRA }} ®^{8}$ with ICCD camera option

Option	Setting
Read Mode	Fluorescence
Ex/Em	Ex470_495 / Em515_575
Camera Gain	2000
Gate Open	6%
Exposure Time	0.53
Read Interval	1 s
Dispense Volume	$50 \mu \mathrm{l}(25 \mu \mathrm{l}$ for 384 -well $)$
Dispense Height	$95 \mu \mathrm{l}(50 \mu \mathrm{l}$ for 384-well $)$
Dispense Speed	$50 \mu \mathrm{l} / \mathrm{sec}$
Expel Volume	$0 \mu \mathrm{l}$
Analysis	Subtract Bias Sample 1

Discovery Services

Table 5. Assay Materials (Not provided)

Description	Supplier and Product Number
HBSS	Invitrogen: 14025
HEPES 1M Stock	EMD Millipore: TMS-003-C
Probenicid	Sigma: P8761
Quest Fluo-8 ${ }^{\text {TM }}$, AM	AAT Bioquest: 21080
DCG IV ligand	Tocris: 1827
Non-Binding $96 / 384$ well Plates (for ligand prep)	Corning: $3605 / 3574$
Black (clear Bottom) cell assay plates	Corning: 3904/ 3712
Coelenterazine-h (250 $)$. Prepare to 10 mM	Promega: S2011

Assay Protocol - Fluorescence

1. Dissociate Culture as Recommended. Collect in Basal Medium. Document Cell Count and Viability
2. Centrifuge the cell suspension at 190 xg for six min
3. Remove supernatant. Gently resuspend the cell pellet in Basal Medium. It is suggested that end user optimize cell plating based on individual formats. (Default: Resuspend in volume to achieve $5 \times 10^{5} \mathrm{cells} / \mathrm{ml}$ (i.e, if collected 5e6 TC, ${ }^{566}{ }_{5 e 5 / m \mathrm{~m}}=10 \mathrm{~mL}$ volume)
4. Seed cell suspension into black, clear bottom plate ($100 \mu \mathrm{~L} /$ well for 96 -well plate). When seeding is complete, place the assay plate at room temperature for 30 min .
5. Move assay plate to a humidified $37^{\circ} \mathrm{C} 5 \% \mathrm{CO}_{2}$ incubator for $18-24 \mathrm{~h}$.
6. Next day, prepare Assay buffer (HBSS, 20mM HEPES, 2.5 mM Probenicid, pH 7.4) and Loading buffer (Assay buffer with 5 mM Fluo8 Dye). Note: Please prepare Fluo8 stock according to Manufacturer's Recommendations
7. Remove medium from assay plate and wash 1X with Assay Buffer.
8. Add Loading buffer to assay plate ($100 \mu \mathrm{~L} /$ well for 96 -well plate). Incubate plate for 1.5 h at room temperature, protected from light.
9. Prepare ligands in assay buffer at $3 x$ final concentration in non-binding plates. Use Buffer Only Control Wells for Background Subtraction.
10. Create protocol for ligand addition. Please refer to FLIPR ${ }^{\text {IEIRA }} ®^{\circledR}$ settings provided in Table 2. Set time course for 180 s , with ligand addition at 10 s .
11. After the run is complete, apply subtract bias on sample 1. We recommend using Negative Control Correction with Buffer Only Wells. Export data to according to research needs. For most Calcium Flux analysis using Export of Max Signal to end of run is sufficient.

HOST CELL

Chem-1, an adherent cell line expressing the promiscuous G-protein, Ga15.

EXOGENOUS GENE EXPRESSION

Human mGLU_{2} cDNA (Accession Number: NM_000839; see CODING SEQUENCE below) and promiscuous G protein are expressed in a bicistronic vector

Discovery Services

CODING SEQUENCE

ATGGG

181 CGCCTGGAGGCCATGCTTTTTGCACTGGACCGCATCAACCGTGACCCGCACCTGCTGCCTGGCGTGCGCCTGGGTGCACACATCCTCGAC

271 AGTTGCTCCAAGGACACACATGCGCTGGAGCAGGCACTGGACTTTGTGCGTGCCTCACTCAGCCGTGGTGCTGATGGCTCACGCCACATC

361 TGCCCCGACGGCTCTTATGCGACCCATGGTGATGCTCCCACTGCCATCACTGGTGTTATTGGCGGTTCCTACAGTGATGTCTCCATCCAG

451 GTGGCCAACCTCTTGAGGCTATTTCAGATCCCACAGATTAGCTACGCCTCTACCAGTGCCAAGCTGAGTGACAAGTCCCGCTATGACTAC

541 TTTGCCCGCACAGTGCCTCCTGACTTCTTCCAAGCCAAGGCCATGGCTGAGATTCTCCGCTTCTTCAACTGGACCTATGTGTCCACTGTG

631 GCGTCTGAGGGCGACTATGGCGAGACAGGCATTGAGGCCTTTGAGCTAGAGGCTCGTGCCCGCAACATCTGTGTGGCCACCTCGGAGAAA

721 GTGGGCCGTGCCATGAGCCGCGCGGCCTTTGAGGGTGTGGTGCGAGCCCTGCTGCAGAAGCCCAGTGCCCGCGTGGCTGTCCTGTTCACC

811 CGTTCTGAGGATGCCCGGGAGCTGCTTGCTGCCAGCCAGCGCCTCAATGCCAGCTTCACCTGGGTGGCCAGTGATGGTTGGGGGGCCCTG

901 GAGAGTGTGGTGGCAGGCAGTGAGGGGGCTGCTGAGGGTGCTATCACCATCGAGCTGGCCTCCTACCCCATCAGTGACTTTGCCTCCTAC

991 TTCCAGAGCCTGGACCCTTGGAACAACAGCCGGAACCCCTGGTTCCGTGAATTCTGGGAGCAGAGGTTCCGCTGCAGCTTCCGGCAGCGA
$331 \mathrm{~F} \quad \mathrm{Q}$
1081 GACTGCGCAGCCCACTCTCTCCGGGCTGTGCCCTTTGAGCAGGAGTCCAAGATCATGTTTGTGGTCAATGCAGTGTACGCCATGGCCCAT

1171 GCGCTCCACAACATGCACCGTGCCCTCTGCCCCAACACCACCCGGCTCTGTGACGCGATGCGGCCAGTTAACGGGCGCCGCCTCTACAAG

1261 GACTTTGTGCTCAACGTCAAGTTTGATGCCCCCTTTCGCCCAGCTGACACCCACAATGAGGTCCGCTTTGACCGCTTTGGTGATGGTATT

1351 GGCCGCTACAACATCTTCACCTATCTGCGTGCAGGCAGTGGGCGCTATCGCTACCAGAAGGTGGGCTACTGGGCAGAAGGCTTGACTCTG

1441 GACACCAGCCTCATCCCATGGGCCTCACCCTCAGCCGGCCCCCTGCCCGCCTCTCGCTGCAGTGAGCCCTGCCTCCAGAATGAGGTGAAG

1531 AGTGTGCAGCCGGGCGAAGTCTGCTGCTGGCTCTGCATTCCGTGCCAGCCCTATGAGTACCGATTGGACGAATTCACTTGCGCTGATTGT
 1621 GGCCTGGGCTACTGGCCCAATGCCAGCCTGACTGGCTGCTTCGAACTGCCCCAGGAGTACATCCGCTGGGGCGATGCCTGGGCTGTGGGA

1711 CCTGTCACCATCGCCTGCCTCGGTGCCCTGGCCACCCTCTTTGTGCTGGGTGTCTTTGTGCGGCACAATGCCACACCAGTGGTCAAGGCC

1801 TCAGGTCGGGAGCTCTGCTACATCCTGCTGGGTGGTGTCTTCCTCTGCTACTGCATGACCTTCATCTTCATTGCCAAGCCATCCACGGCA

1891 GTGTGTACCTTACGGCGTCTTGGTTTGGGCACTGCCTTCTCTGTCTGCTACTCAGCCCTGCTCACCAAGACCAACCGCATTGCACGCATC

1981 TTCGGTGGGGCCCGGGAGGGTGCCCAGCGGCCACGCTTCATCAGTCCTGCCTCACAGGTGGCCATCTGCCTGGCACTTATCTCGGGCCAG

2071 CTGCTCATCGTGGTCGCCTGGCTGGTGGTGGAGGCACCGGGCACAGGCAAGGAGACAGCCCCCGAACGGCGGGAGGTGGTGACACTGCGC
691 L L I V V V A \quad W L
2161 TGCAACCACCGCGATGCAAGTATGTTGGGCTCGCTGGCCTACAATGTGCTCCTCATCGCGCTCTGCACGCTTTATGCCTTCAAGACTCGC

2251 AAGTGCCCCGAAAACTTCAACGAGGCCAAGTTCATTGGCTTCACCATGTACACCACCTGCATCATCTGGCTGGCATTCCTGCCCATCTTC

Discovery Services


```
2 3 4 1 ~ T A T G T C A C C T C C A G T G A C T A C C G G G T A C A G A C C A C C A C C A T G T G C G T G T C A G T C A G C C T C A G C G G C T C C G T G G T G C T T G G C T G C C T C T T T ~
    781 \
2 4 3 1 ~ G C G C C C A A G C T G C A C A T C A T C C T C T T C C A G C C G C A G A A G A A C G T G G T T A G C C A C C G G G C A C C C A C C A G C C G C T T T G G C A G T G C T G C T G C C ~
```



```
2 5 2 1 ~ A G G G C C A G C T C C A G C C T T G G C C A A G G G T C T G G C T C C C A G T T T G T C C C C A C T G T T T G C A A T G G C C G T G A G G T G G T G G A C T C G A C A A C G T C A ~
```



```
2 6 1 1 ~ T C G C T T ~ T G A ~
    871 S L Stp
```


RELATED PRODUCTS

Product Number
HTSCHEM-1
HTS146M

Description
ChemiScreen ${ }^{\text {TM }}$ Chem-1 Parental Cell Line (control cells)
ChemiScreen ${ }^{\mathrm{TM}} \mathrm{mGLU}_{2}$ Metabotropic Glutamate Receptor Membrane Prep

REFERENCES

1. Conn PJ and Pin JP (1997) Pharmacology and functions of metabotropic glutamate receptors. Annu. Rev. Pharmacol. Toxicol. 37: 205-37.
2. Galici R et al. (2005) A selective allosteric potentiator of metabotropic glutamate (mGlu) 2 receptors has effects similar to an orthosteric mGlu2/3 receptor agonist in mouse models predictive of antipsychotic activity. J. Pharmacol. Exp. Ther. 315: 1181-7.
3. Galici R et al. (2006) Biphenyl-indanone A, a positive allosteric modulator of the metabotropic glutamate receptor subtype 2, has antipsychotic- and anxiolytic-like effects in mice. J. Pharmacol. Exp. Ther. 318: 173185.
4. Jones CK et al. (2005) Analgesic effects of the selective group II (mGlu2/3) metabotropic glutamate receptor agonists LY379268 and LY389795 in persistent and inflammatory pain models after acute and repeated dosing. Neuropharmacology 49 Suppl 1:206-18.
5. Kowal D et al. (2003) Functional calcium coupling with the human metabotropic glutamate receptor subtypes 2 and 4 by stable co-expression with a calcium pathway facilitating G-protein chimera in Chinese hamster ovary cells. Biochem. Pharmacol. 66: 785-790.
6. Schoepp DD et al. (1997) The novel metabotropic glutamate receptor agonist $2 R, 4 R$-APDC potentiates stimulation of phosphoinositide hydrolysis in the rat hippocampus by 3,5-dihydroxyphenylglycine: evidence for a synergistic interaction between group 1 and group 2 receptors. Neuropharmacology 35: 1661-1672.

FOR RESEARCH USE ONLY; NOT FOR USE IN DIAGNOSTIC PROCEDURES. NOT FOR HUMAN OR ANIMAL CONSUMPTION

Unless otherwise stated in our catalog or other company documentation accompanying the product(s), our products are intended for research use only and are not to be used for any other purpose, which includes but is not limited to, unauthorized commercial uses, in vitro diagnostic uses, ex vivo or in vivo therapeutic uses or any type of consumption or application to humans or animals.

No part of these works may be reproduced in any form without permission in writing.

Limited Use Label License Agreement

In addition to the General Terms \& Conditions of Sale for Products and Services section, this Product is subject to Limited Use Label License Agreement. Please go to https://www.eurofinsdiscoveryservices.com/cms/cms-content/misc/legal-disclaimer/ for more information.

