Development of Three Orthogonal Assays Suitable for the Identification and Qualification of PIKfyve Inhibitors.

Authors: Fogarty K, Kashem M, Bauer A, Bernardino A, Brennan D, Cook B, Farrow N, Molinaro T, Nelson R.
Publisher/Year: Assay Drug Dev Technol. 2017 Jul;15(5):210-219.
Pub Med ID/Journal ID: PMID:28723271


FYVE-type zinc finger-containing phosphoinositide kinase (PIKfyve) catalyzes the formation of phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) from phosphatidylinositol 3-phosphate (PI(3)P). PIKfyve has been implicated in multiple cellular processes, and its role in the regulation of toll-like receptor (TLR) pathways and the production of proinflammatory cytokines has sparked interest in developing small-molecule PIKfyve inhibitors as potential therapeutics to treat autoimmune and inflammatory diseases. We developed three orthogonal assays to identify and qualify small-molecule inhibitors of PIKfyve: (1) a purified component microfluidic enzyme assay that measures the conversion of fluorescently labeled PI(3)P to PI(3,5)P2 by purified recombinant full-length human 6His-PIKfyve (rPIKfyve); (2) an intracellular protein stabilization assay using the kinase domain of PIKfyve expressed in HEK293 cells; and (3) a cell-based functional assay that measures the production of interleukin (IL)-12p70 in human peripheral blood mononuclear cells stimulated with TLR agonists lipopolysaccharide and R848. We determined apparent Km values for both ATP and labeled PI(3)P in the rPIKfyve enzyme assay and evaluated the enzyme's ability to use phosphatidylinositol as a substrate. We also tested four reference compounds in the three assays and showed that together these assays provide a platform that is suitable to select promising inhibitors having appropriate functional activity and confirmed cellular target engagement to advance into preclinical models of inflammation.